
1 

Abstract— GNSS/INS integrated solution has been extensively 

studied over the past decades. However, its performance relies 

heavily on environmental conditions and sensor cost. The GNSS 

positioning can obtain satisfactory performance in the open area. 

Unfortunately, its accuracy can be severely degraded in a highly 

urbanized area, due to the notorious multipath effects and 

none-line-of-sight (NLOS) receptions. As a result, excessive GNSS 

outliers occur, which causes huge error in GNSS/INS integration. 

This paper proposes to apply a fish-eye camera to capture the sky 

view image to further classify the NLOS and line-of-sight (LOS) 

measurements. In addition, the raw INS and GNSS measurements 

are tightly integrated using a state-of-the-art probabilistic factor 

graph model. Instead of excluding the NLOS receptions, this 

paper makes use of both the NLOS and LOS measurements by 

treating them with different weightings. Experiments conducted 

in typical urban canyons of Hong Kong showed that the proposed 

method could effectively mitigate the effects of GNSS outliers, and 

an improved accuracy of GNSS/INS integration was obtained, 

when compared with the conventional GNSS/INS integration. 

Index Terms— GNSS; INS; Camera; Integration; Factor 

Graph; Positioning; Autonomous Driving  

I. INTRODUCTION

Over the past decade, there is an increasing demand for 

accurate and absolute positioning service in many applications, 

such as autonomous driving vehicles (ADV) [1] and unmanned 

aerial vehicle (UAV) [2]. Global navigation satellite system 

(GNSS) [3] currently remains the principal mean of providing 

globally referenced positioning in the integrated navigation 

system. With the availability of multiple satellite constellations, 

GNSS can provide satisfactory performance in the open area. 

However, the positioning error can go up to 50 meters in the 

highly urbanized city such as Hong Kong [4]. The inertial 

navigation system (INS) can provide high-frequency relative 

acceleration and angular velocity measurements. However, the 

INS is subject to the long-term drift. Therefore, the GNSS is 

usually integrated [5-8] with inertial navigation system (INS) to 

improve the performance of GNSS stand-alone method, due to 

their complementary properties [3]. Unfortunately, the 

GNSS/INS integration still cannot provide satisfactory 

accuracy in urban canyons where there are excessive GNSS 

positioning outliers. The main reason behind is that the GNSS 

signal blockage and reflection caused by the surrounding 

buildings [9] and dynamic objects [10] lead to the multipath 
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effects and none-line-of-sight (NLOS) receptions [11]. In 

summary, excessive unexpected GNSS outliers (see Figure 1) 

are the dominant difficulty for the accuracy of GNSS/INS 

integration. The major research streams to improve the 

performance of the GNSS/INS integration include: 1) develop 

better sensor integration framework to resist the effects of 

GNSS outliers ( due to NLOS receptions and multipath effects). 

2) mitigate the standalone GNSS positioning using innovative

signal processing methods.

The recent GNSS/INS integration frameworks were 

extensively reviewed in [12] and detailed in [3]. The three most 

common integration solutions are the loosely-coupled [13], the 

tightly-coupled [14] and the ultra-tightly [15] coupled 

integrations. The ultra-tightly coupled integration makes use of 

the baseband signal processing of GNSS receiver such as the 

tracking loops, which is usually not accessible for commercial 

GNSS receivers. The major difference between the tightly 

coupled and loosely coupled solution is the domain of GNSS 

measurements used in the GNSS/INS integration scheme. In 

the loosely coupled GNSS/INS integration, the position and 

velocity from GNSS receiver are directly incorporated with the 

INS navigation solution. Whereas, the tightly coupled scheme 

uses the GNSS raw measurements, such as pseudorange. The 

tightly-coupled GNSS/INS integration can obtain better 

performance as shown in [14]. The main reason is that the 

quality of GNSS measurements can be modeled in a more 

accurate way [14]. The Kalman filter [16] and its variants [7, 17] 

are commonly used to integrate the GNSS/INS. These 

filter-based sensor integrations estimate the optimal posterior 

of the state based on the measurements at current epoch and the 

state at last epoch. In other words, the filter-based method is not 

able to fully make use of the advantage of historical states and 

observations. Recently, the factor graph [18] which is popular 

in the robotics field is employed to integrate GNSS/INS in a 

loosely-coupled manner [19] and tightly coupled manner [20]. 

Unfortunately, only simulated data are evaluated both in [19] 

and [20].The result shows that the tightly-coupled GNSS/INS 

integration using factor graph optimization obtains better 

performance than the filter-based method [20]. The main 

reason is that the factor graph based GNSS/INS integration 

makes use of the historical information to estimate the optimal 

state sets which can increase the resistance against the 

unexpected GNSS outliers. However, this increased resistance 

relies on the uncertainty estimation of GNSS measurements. In 

fact, majority of the GNSS measurements are NLOS receptions 

in urbanized areas, such as Hong Kong and New York. The 
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uncertainty of NLOS reception cannot be effectively modeled 

simply based on the conventional elevation angle and signal to 

noise ratios (SNR) based model [21] as NLOS tends to increase 

the uncertainty. 

Instead of improving GNSS/INS integration from the 

integration scheme aspect, researchers propose different 

innovative signal processing methods, such as the sensitivity 

tracking loops [22], cooperative GNSS positioning [23, 24], the 

popular 3D map aided GNSS (3DMA GNSS) [25-29], 3D 

LiDAR aided GNSS [10, 11] and camera aided GNSS [30, 31]. 

The 3DMA GNSS could effectively improve the performance 

of GNSS positioning by excluding the NLOS receptions or 

correcting the NLOS receptions. A well-known method, GNSS 

shadow matching, was studied to match the measured satellite 

visibility with the predicted satellite visibility of hypothesized 

positions [32-34]. However, the performance of shadow 

matching relies on the quality of satellite visibility 

classification and initial guess of GNSS receiver. A 

likelihood-based 3DMA GNSS method, which modeled the 

measurement uncertainty to mitigate the NLOS effects, was 

also proposed to provide accurate positioning in the 

along-street direction [35]. Due to the complementariness of 

the shadow matching and the likelihood-based 3DMA GNSS, 

their integration was recently studied [36] to obtain better 

performance. Another stream of range-based 3DMA GNSS 

method was to correct the NLOS affected measurement for 

GNSS positioning [28, 37-39]. These methods were proposed 

to simulate the signals transmission routes using the ray-tracing 

method. However, they rely on the initial guess of the GNSS 

receiver’s position and the availability of 3D maps, which are 

the main difficulties for implementation. The recently proposed 

3D LiDAR aided GNSS could effectively improve the GNSS 

positioning by excluding [10] or correcting [11] the NLOS 

receptions. However, only part of the NLOS could be detected 

due to the limited field of view (FOV) of 3D LiDAR sensor. To 

detect the visibility of satellites, the researchers employed 

omnidirectional and fisheye cameras [30, 40-42] to detect the 

sky views of the environment. NLOS receptions could be 

detected with the detected sky views and decent improvements 

were obtained. Similar researches [43, 44] were conducted 

recently and the improved GNSS positioning was integrated 

with visual simultaneous localization and mapping [45]. 

However, these methods tended to exclude the NLOS 

receptions from further GNSS positioning which was not 

applicable in the dense urban areas. As the excessive NLOS 

exclusion could severely distort the geometry distribution of 

satellites. According to our research in [46], NLOS exclusion 

could conversely increase the GNSS positioning error in dense 

urban. Therefore, NLOS exclusion is not preferable for 

applications in urban canyons. 

In summary, the factor graph-based tightly-coupled 

GNSS/INS integration obtained the best performance among 

all the sensor integration frameworks. However, it could not 

provide satisfactory accuracy when there were excessive 

unexpected GNSS NLOS measurements. In other words, 

insufficient modeling of NLOS receptions was the major 

difficulty. To solve this problem, this paper proposes to tightly 

integrate GNSS/INS using the factor graph with the aid of 

fish-eye camera detecting NLOS reception. In this case, the 

potential GNSS outliers can be modeled subsequently. Instead 

of excluding the NLOS receptions, this paper makes use of both 

the NLOS and LOS measurements by treating them with 

different weightings. Finally, we validate the proposed method 

in typical urban areas of Hong Kong. 

Fig. 1. GNSS positioning outliers: illustration of the performance of different 

GNSS positioning methods in different urban scenarios of Hong Kong. NMEA 

denotes the solution provided by GNSS commercial receiver. Differential 
GNSS (DGNSS) and real-time kinematics (RTK) are the state-of-the-art 

solution provided by GNSS open-source code, RTKLIB [47]. 

The rest of the paper is organized as following: In Section II, 

we discuss the overview of the proposed method. The 

LOS/NLOS classification and uncertainty modeling based on 

the fish-eye camera is presented in Section III. The proposed 

GNSS/INS integration is presented in Section IV before the 

experiment result is given in Section V. Finally, the conclusion 

of this study is summarized in Section VI. 

II. OVERVIEW OF THE PROPOSED METHOD

The flowchart of the proposed method is shown in Figure 2. 

Firstly, a fish-eye camera is employed to capture the sky view 

image. The image segmentation is applied to separate the 

sky-view into sky and non-sky areas. With the aid of the 

globally referenced heading angle provided by an attitude and 

heading reference system (AHRS), which is a system integrated 

by INS and magnetometer. The coordinate of sky-view image 

can be transformed into the local coordinate (or we call it local 

frame). The AHRS used in this paper is a 9-axis product which 

consists of accelerometer, gyroscope, and magnetometer. It can 

output the absolute orientation. Secondly, the LOS/NLOS 

satellites can be classified based on the transformed binary 

images. Thirdly, the potential uncertainty of LOS/NLOS 

measurements is estimated using a scaled weighting scheme. 

Finally, the raw INS measurements, both the raw LOS and 

NLOS satellite measurements, are tightly integrated using a 

probabilistic factor graph model. The major contributions of 

this paper are listed as follows: 

(1) This paper employs the fish-eye camera to classify the

LOS/NLOS measurement to further re-weight LOS and NLOS 

satellites. 

(2) This paper employs the state-of-the-art factor graph to

integrate the GNSS/INS. 
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(3) This paper evaluates performance of multiple GNSS

standalone and tightly-coupled GNSS/INS integrations in 

typical urban canyons of Hong Kong. 

We believe that the proposed method in this paper can have a 

positive impact on both the academic and the industrial field of 

ADV. 

Fig. 2. Flowchart of the proposed GNSS/INS aided by fish-eye camera integration method which includes three parts: sensing, modeling, and optimization. 

III. LOS/NLOS CLASSIFICATION AND MODELING

This section presents the classification of the satellite 

visibility in subsection A. The modeling of GNSS LOS and 

NLOS measurements are introduced in subsection B 

subsequently. 

A. LOS/NLOS Classification Using Fish-eye Camera

The sky-view image captured from the fish-eye camera can

effectively represent the geometry distribution of surrounding 

objects, such as buildings, tall dynamic vehicles, and trees, etc. 

To identify the LOS/NLOS using the sky-view image, four 

steps are proposed which can be seen in Figure 3: 1) transform 

the raw sky-image from body frame [3] to local frame [3] with 

the aid of heading angle from the AHRS. 2) segment the 

sky-view image and separate the sky and non-sky areas. 3) 

project the satellite onto the segmented image based on the 

satellite elevation and azimuth angles. 4) identify the satellite 

visibility based on the segmented image and satellite position in 

the image. 

Step 1: The raw image from the fish-eye camera is taken in 

the body frame. In 3DMA GNSS [27], the 3D building models 

are usually projected onto the skyplot [48] together with the 

satellite to further identify whether the satellite is blocked by 

buildings. In this paper, we propose to directly project the 

satellite onto the image to identify the satellite visibility. 

Therefore, the image in the body frame should transformed to 

the same frame as a satellite in the local frame. Assuming that 

the fish-eye camera is sky-pointing, only the globally 

referenced heading (𝜏ℎ) of the vehicle (provided by INS) is

required to transform the image into the local frame.  

Step 2: To separate the sky and non-sky area, we first 

transform the colored image to grayscale image. Then, the 

grayscale image is transformed to a binary image with an 

adaptive threshold. The noisy points inside the binary image are 

filtered using a median filtering algorithm. These functions are 

conducted using OpenCV [49] library. The binary image is 

shown in Figure 3 (b). If the satellite locates inside the sky area, 

the satellite is visible to the GNSS receiver and vice versa. 

Step 3: To identify the satellite visibility based on the 

processed image in Step 2, the satellite needs to be projected on 

the same coordinate system. The illustration of projecting 

satellite onto the image is shown in Figure 3 (c) which is a 

typical fish-eye projection model [50]. For each satellite 

associated with specific azimuth and elevation angles, it 

possesses a pixel position inside the sky view image. We 

assume that the optical center of the camera is zenith pointing. 

To determine the position of the satellite inside the image, we 

need, 1) The distance, 𝑟𝑝𝑖𝑥 , from the center of the sky-view

image in pixels which is correlated to the elevation angle, ∅𝑠𝑎𝑡 ,

of the satellite, and 2) The azimuth angle of the satellite.  

Assume that the satellite is projected onto the image plane 

shown in Figure 3 (c), the image coordinate system is inside the 

image plane. The 𝑟𝑝𝑖𝑥  shown in Figure 3 (c) indicates the

distance between the satellite position in the image and center 

of the image. The 𝑟𝑝𝑖𝑥 is determined by the satellite elevation

angle and the focal length (𝑓𝑐) of the fisheye camera. The angle

𝜃 satisfies: 

𝜃 =
π

2
− ∅𝑠𝑎𝑡 (1) 

Thus, we have 𝑟pix being formulated as follows [50]:

𝑟𝑝𝑖𝑥 = 2 ∙ 𝑓𝑐  (𝜃/2) (2)
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Given the center of the sky-view image in a pixel position 

(𝑥𝑐 , 𝑦𝑐), the position of the given satellite inside the sky view

image can be formulated as (𝑥𝑠, 𝑦𝑠):

𝑥𝑠 = 𝑥𝑐 + 𝑟𝑝𝑖𝑥  cos (𝜏ℎ + 𝛼𝑠𝑎𝑡)  (3) 

𝑦𝑠 = 𝑦𝑐 − 𝑟𝑝𝑖𝑥  sin (𝜏ℎ + 𝛼𝑠𝑎𝑡)     (4) 

where the 𝛼𝑠𝑎𝑡 is the azimuth angle of the satellite.

Step 4: After the satellite is projected onto the sky-view 

image as shown in Figure 3 (d), we propose a searching method 

to identify the satellite visibility. For a given satellite (see 

Figure 3 (d)) located inside a sky-view image, we propose to 

identify the visibility using Algorithm 1. 𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑑  indicates the

threshold of the mean pixel value and is experimentally 

determined. A satellite visibility classification result is shown 

in Figure 4. The satellites are projected onto the image with the 

red and green circles denoting the NLOS and healthy 

measurements, respectively. 

Fig. 3. Illustration of the proposed method to classify satellite visibility by 

fisheye camera. Four steps are 1) Coordination transformtion from body to 

local frames, 2) Segementation of sky and non-sky area , 3) Projection of 

satellites in image coordinate and 4) Identification of satellite visibility.  

Algorithm 1: Satellite Visibility Identification 

Input: binary image 𝐼𝑡  as shown in Figure 3 (d), satellite

position (𝑥𝑠, 𝑦𝑠)  in pixels inside the image, radius of the

searching circle: 𝑅𝑠.

Output: satellite visibility 𝑠𝑡𝑣  (visible: 𝑠𝑡𝑣 = 1 , invisible:

𝑠𝑡𝑣 = 0)

S1: initialize the searching point (𝑥𝑑 , 𝑦𝑑) starting from the

center ((𝑥𝑐 , 𝑦𝑐) ) of the image 𝐼𝑡  ,  𝑠𝑡𝑣 = 1 , the searching

direction denoted by angle ε (see Figure 3 (d)).  

S2: given a constant incremental value ∆𝑑 , the searching 

point is updated as follows: 

𝑥𝑑 = 𝑥𝑑 + ∆𝑑 cos (𝜀) (5) 

𝑦𝑑 = 𝑦𝑑 − ∆𝑑 sin(𝜀)  (6) 

S3: given the searching point (𝑥𝑑 , 𝑦𝑑) as the center of the

searching circle, calculate the mean of pixel values of all the 

points inside the searching circle as follows: 

𝑉̅ = ∑ 𝐼𝑡(𝑥𝑑,𝑖, 𝑦𝑑,𝑖)
𝑚
𝑖=1  (7) 

𝐼𝑡(𝑥𝑑,𝑖 , 𝑦𝑑,𝑖) represents the pixel value of the point i inside the

searching circle with radius of 𝑅𝑠.

S4: if 𝑉̅ > 𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑑, set 𝑠𝑡𝑣 to 0.

S5: Repeat Steps 2 and 3 until the searching point reaches the 

position (𝑥𝑠, 𝑦𝑠) of the given satellite.

Fig. 4. Illustration of satellite visibility classification result.  

B. LOS/NLOS Uncertainty Modeling

In terms of the measurements from the GNSS receiver, each

pseudorange measurement 𝜌𝑛 is written as follows [51].

𝜌𝑛 = 𝑅𝑛 + 𝑐(𝛿𝑡
r − 𝛿𝑡𝑛

sv) + 𝐼𝑛 + 𝑇𝑛 + 𝜀𝑛  (8) 

where 𝑅𝑛 is the geometric range between the satellite and the

GNSS receiver. 𝛿𝑡𝑛
sv  denotes the satellite clock bias. 𝛿𝑡r

indicates the receiver clock bias. 𝐼𝑛 represents the ionospheric

delay distance; 𝑇𝑛 indicates the tropospheric delay distance. 𝜀𝑛
represents the errors caused by the multipath effects, NLOS 

receptions, receiver noise, antenna delay, and so on. The 

ionospheric delay and tropospheric delay can be modeled using 

specific models [52]. Therefore, the majority of the uncertainty 

in pseudorange measurements is caused by the multipath 

effects and NLOS receptions in 𝜀𝑛. The satellite with a lower

elevation angle and smaller signal to noise ratio (SNR) has 

higher possibility to be contaminated by the NLOS errors [4]. 

Therefore, the pseudorange uncertainty modeling based on 

satellite elevation angle and SNR is studied in [21, 53]. The 

weighting scheme in [53] shows satisfactory performance in 

open area. However, the scheme may not work in dense urban 

as the NLOS can possess high elevation angle and SNR which 
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can be seen in our previous work in [42]. Moreover, this 

weighing scheme treat the LOS and NLOS in a same manner 

which is not preferable when the NLOS is identified. The 

weighting scheme in [21] employs a scaling factor to treat the 

LOS and NLOS with different weighting. Inspired by this, this 

paper proposes to model the uncertainty of LOS and NLOS 

using the weighting scheme in [53] and a scaling factor is added 

onto the scheme to treat the LOS and NLOS in a different 

manner. Assume that 𝑺𝑽𝒊  represents the information from

satellite 𝑖  and 𝑺𝑽𝒊 = {𝑎𝑧𝑖 , 𝑒𝑙𝑖 , 𝑆𝑁𝑅𝑖, 𝜌𝑖} . 𝑎𝑧𝑖  denotes the

satellite azimuth angle. 𝑒𝑙𝑖  represents satellite elevation angle,

𝑆𝑁𝑅𝑖  indicates satellite SNR and 𝜌𝑖  denote the pseudorange

measurement. The weighting scheme in [53] is as follows: 

𝑾𝐿𝑂𝑆
(𝑖) (𝑒𝑙𝑖 , 𝑆𝑁𝑅𝑖) =

1

𝑠𝑖𝑛2𝑒𝑙𝑖
(10−

(𝑆𝑁𝑅𝑖−𝑇)

𝑎 ((
𝐴

10
−
(𝐹−𝑇)
𝑎

−

1)
(𝑆𝑁𝑅𝑖−𝑇)

𝐹−𝑇
+ 1))     (9)

The parameter T indicates the threshold of SNR and is equal 

to  𝑆𝑁𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 . Parameter a, A and F are experimentally 

determined. The weighting matrix 𝑾  is a diagonal matrix 

constituted by the weighting  𝑾(𝑘)(𝑒𝑙𝑒𝑖 , 𝑆𝑁𝑅𝑖). The weighting

scheme treats LOS and NLOS using the same formula. We 

propose to add a scaling factor K to adapt the weighting scheme 

to treat LOS and NLOS differently as follows: 

𝑾𝑁𝐿𝑂𝑆
(𝑖) (𝑒𝑙𝑖 , 𝑆𝑁𝑅𝑖) = 𝐾 ∙ 𝑾𝐿𝑂𝑆

(𝑖) (𝑒𝑙𝑖 , 𝑆𝑁𝑅𝑖) (10) 

when the received signal is LOS, K is equal to 1. Whereas, 

when it is NLOS, K changes and is experimentally determined. 

In this paper, the variance (𝜎𝑝) of a pseudorange measurement

is computed as 𝜎𝑝 = 1/𝑾
(𝑖)(𝑒𝑙𝑖 , 𝑆𝑁𝑅𝑖) . In this case, the

satellite visibility is classified, and corresponding uncertainty is 

modeled. 

IV. GNSS/INS INTEGRATION USING FACTOR GRAPH

In general, the goal of the multi-sensor integration is to find 

the optimal posterior state given the measurements from 

sensors. Therefore, the sensor integration problem can be 

formulated as a typical maximum a posteriori (MAP) problem 

[54]. In this paper, the measurements include two parts, the 

GNSS raw measurements and INS measurements. Assuming 

that the GNSS measurements and INS measurements are 

independent of each other. We can formulate the GNSS/INS 

integration problem as: 

𝒙 = argmax ∏ 𝑃(𝒛𝑡,𝑖|𝒙𝑡)∏ 𝑃(𝒙𝑡|𝒙𝑡−1, 𝒖𝑡)𝑡𝑡,𝑖 (11) 

where 𝒛𝑡,𝑖 represents the GNSS raw measurements at epoch t

and 𝒙𝑡 represents the system state at epoch t. The 𝒖𝑡 denotes

the control input (INS measurements). 𝒙 is the optimal system 

state set [54]. In the conventional Bayes filter-based sensor 

integration scheme [55], the first order Markov assumption [55] 

is applied. The GNSS/INS integration problem is formulated 

as: 

𝒙 = argmax  𝑃(𝒛𝑡,𝑖|𝒙𝑡)𝑃(𝒙𝑡|𝒙𝑡−1, 𝒖𝑡)     (12)

The main difference is that the Bayes filter-based method finds 

the best estimation of the current state only by considering: 1) 

the last state. 2) control input and measurements at the current 

epoch. It does not utilize the full advantage of the historical 

information. Conversely, the factor graph-based sensor 

integration [19] is studied to transfer the MAP problem into the 

non-linear optimization problem. It treats all the sensor 

measurements as constraints (edges) [19] associated with 

specific states (nodes) [19]. According to [18], the MAP 

problem can be expressed as: 

𝝌̂ = argmax∏ 𝑓𝑖(𝝌𝑖)𝑖  (13) 

where 𝑓𝑖(𝝌𝑖)  is a factor associated with measurements. 𝝌
denotes the states sets from first epoch to current epoch. 

Assuming that all the sensor noise is subject to Gaussian 

distribution, the negative logarithm of 𝑓𝑖(𝝌𝑖) is proportional to

the error function [18] associated with measurements.  

The graph structure of the proposed GNSS/INS integration 

is shown in Figure 5. The state space of the system is 

represented as: 

𝒙𝑘 = (𝑿𝑘,𝑟
𝑒𝑐𝑒𝑓

, 𝑽𝑘,𝑟
𝑒𝑐𝑒𝑓

, 𝑹𝑘,𝑟
𝑙𝑜𝑐𝑎𝑙 , 𝑩𝑘,𝑟

𝑏𝑜𝑑𝑦
, 𝜹𝑘,𝑟
𝑐𝑙𝑜𝑐𝑘)𝑇       (14) 

where 𝒙𝑘  denotes the system state. 𝑿𝑘,𝑟
𝑒𝑐𝑒𝑓

=

(𝑥𝑘,𝑟
𝑒𝑐𝑒𝑓

, 𝑦𝑘,𝑟
𝑒𝑐𝑒𝑓

, 𝑧𝑘,𝑟
𝑒𝑐𝑒𝑓

)  represents the position of the GNSS 

receiver in ECEF coordinate [3] at given epoch k. 𝑽𝑘,𝑟
𝑒𝑐𝑒𝑓

=

(𝑣𝑥𝑘,𝑟
𝑒𝑐𝑒𝑓

, 𝑣𝑦𝑘,𝑟
𝑒𝑐𝑒𝑓

, 𝑣𝑧𝑘,𝑟
𝑒𝑐𝑒𝑓

)  denotes the velocities of the GNSS 

receiver in ECEF coordinate, respectively. 𝑹𝑘,𝑟
𝑙𝑜𝑐𝑎𝑙 =

(𝜃𝑘,𝑟
𝑙𝑜𝑐𝑎𝑙 , 𝜙𝑘,𝑟

𝑙𝑜𝑐𝑎𝑙 , 𝜓𝑘,𝑟
𝑙𝑜𝑐𝑎𝑙) denotes the orientation in local frame.

𝑩𝑘,𝑖𝑚𝑢
𝑏𝑜𝑑𝑦

= (𝑎𝑘,𝑥
𝑏𝑜𝑑𝑦

, 𝑎𝑘,𝑦
𝑏𝑜𝑑𝑦

, 𝑎𝑘,𝑧
𝑏𝑜𝑑𝑦

, 𝑤𝑘,𝑥
𝑏𝑜𝑑𝑦

, 𝑤𝑘,𝑦
𝑏𝑜𝑑𝑦

, 𝑤𝑘,𝑧
𝑏𝑜𝑑𝑦

)  denotes 

the bias of accelerometer and gyroscope in body (INS) frame. 

𝜹𝑘,𝑟
𝑐𝑙𝑜𝑐𝑘  denotes the GNSS receiver clock bias. In Figure 5, the 

black shaded rectangle represents the INS factor. The red and 

green shaded rectangles denote the LOS and NLOS satellites, 

respectively. The blue shaded box represents the state transition 

factor. The light green shaded box represents the INS 

accelerometer and gyroscope bias term. 

The graph in Figure 5 includes all the historical observation 

measurements and states, which is one of the main differences 

between the conventional Kalman filter-based sensor 

integration [56] and the factor graph-based sensor integration. 
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Fig. 5. Proposed GNSS/INS integration graph structure using a factor graph. 

A. Motion Model Factor

We use a constant velocity model to constraint the two

consecutive nodes (states). Based on the constant velocity 

model, the state transition (motion model) can be expressed as: 

𝒙𝑘+1 = ℎ
𝑀𝑀(𝒙𝑘) + 𝛮(0, 𝜮𝑘

𝑀𝑀) (15) 

where 𝒙𝑘+1  denotes the state at given epoch k+1. ℎ𝑀𝑀(∗)

represents the motion model function. 𝜮𝑘
𝑀𝑀 is the covariance

matrix associated with the motion model whose noise is subject 

to Gaussian distribution. Based on the constant velocity motion 

model, the motion model function can be expressed as: 

𝒙𝑘+1 = ℎ
𝑀𝑀(𝒙𝑘) =

(

𝑥𝑘,𝑟
𝑒𝑐𝑒𝑓

+ 𝑣𝑥𝑘,𝑟
𝑒𝑐𝑒𝑓

∙ ∆𝑡

𝑦𝑘,𝑟
𝑒𝑐𝑒𝑓

+ 𝑣𝑦𝑘,𝑟
𝑒𝑐𝑒𝑓

∙ ∆𝑡

𝑧𝑘,𝑟
𝑒𝑐𝑒𝑓

+ 𝑣𝑧𝑘,𝑟
𝑒𝑐𝑒𝑓

∙ ∆𝑡

𝜹𝑘,𝑟
𝑐𝑙𝑜𝑐𝑘

𝑩𝑘,𝑟
𝑏𝑜𝑑𝑦𝑇

)

(16) 

∆𝑡 is the time difference between the two states. Therefore, 

the error function (𝒆𝑘
𝑀𝑀) of the motion model factor can be

expressed as: 

||𝒆𝑘
𝑀𝑀||

Σ𝑘
𝑀𝑀
2 = ||𝒙𝑘+1 − ℎ

𝑀𝑀(𝒙𝑘)||𝜮𝑘
𝑀𝑀
2 (17) 

B. INS Factor

As the INS applied in this paper is a 9-axis product, it can

provide acceleration measurements, angular velocity 

measurements, and magnetometer measurements. Moreover, 

the orientation relative to the local frame can also be provided. 

The measurements from IMU is expressed as follows: 

𝒛𝑘
𝑟𝑎𝑤 =

(𝜃𝑘,𝐴𝐻𝑅𝑆
𝑙𝑜𝑐𝑎𝑙 , 𝜙𝑘,𝐴𝐻𝑅𝑆

𝑙𝑜𝑐𝑎𝑙 , 𝜓𝑘,𝐴𝐻𝑅𝑆
𝑙𝑜𝑐𝑎𝑙 , 𝑤𝑥𝑘

𝑏𝑜𝑑𝑦
, 𝑤𝑦𝑘

𝑏𝑜𝑑𝑦
, 𝑤𝑧𝑘

𝑏𝑜𝑑𝑦

, 𝑎𝑥𝑘
𝑏𝑜𝑑𝑦

, 𝑎𝑦𝑘
𝑏𝑜𝑑𝑦

𝑎𝑧𝑘
𝑏𝑜𝑑𝑦

)

𝑇

(18) 

where 𝑤𝑥𝑘
𝑏𝑜𝑑𝑦

, 𝑤𝑦𝑘
𝑏𝑜𝑑𝑦

, 𝑤𝑧𝑘
𝑏𝑜𝑑𝑦

 represents the angular velocity 

in the INS frame. 𝑎𝑥𝑘
𝑏𝑜𝑑𝑦

, 𝑎𝑦𝑘
𝑏𝑜𝑑𝑦

, 𝑎𝑧𝑘
𝑏𝑜𝑑𝑦

 represents the 

acceleration measurements in the INS frame. As the estimated 

state x𝑘 is in the global frame (ECEF), we need to transform the

acceleration measurements from body frame to global frame 

based on the orientation and its position at last epoch. The 

transformed acceleration measurement 𝒂𝑘
𝑒𝑐𝑒𝑓

=

(𝑎𝑥𝑘
𝑒𝑐𝑒𝑓

, 𝑎𝑦𝑘
𝑒𝑐𝑒𝑓

, 𝑎𝑧𝑘
𝑒𝑐𝑒𝑓

)𝑇 is as follows [3]:

𝒂𝑘
𝑒𝑐𝑒𝑓

= 𝑹𝐺𝐿𝑹𝐿𝐵(𝑎𝑥𝑘
𝑏𝑜𝑑𝑦

− 𝑎𝑘,𝑥
𝑏𝑜𝑑𝑦

, 𝑎𝑦𝑘
𝑏𝑜𝑑𝑦

−

𝑎𝑘,𝑥
𝑏𝑜𝑑𝑦

, 𝑎𝑧𝑘
𝑏𝑜𝑑𝑦

− 𝑎𝑘,𝑥
𝑏𝑜𝑑𝑦

)𝑇 (19) 

where 𝒂𝑘
𝑒𝑐𝑒𝑓

 is the acceleration measurements in ECEF frame.

𝑹𝑳𝑩  is the transform matrix to transform the acceleration

measurements from body frame to local frame based on the 

orientation. 𝑹𝑮𝑳 is the transformation matrix to transform the

acceleration measurement from local frame to global frame 

based on the 𝒙𝑘 with the 𝑹𝑮𝑳 being expressed as follows:

𝑹𝐺𝐿 =

(

−sin (∅𝑙𝑜𝑛) −sin (∅𝑙𝑎𝑡)cos (∅𝑙𝑜𝑛) cos (∅𝑙𝑎𝑡)cos (∅𝑙𝑜𝑛)

cos (∅𝑙𝑜𝑛) −sin (∅𝑙𝑎𝑡)sin (∅𝑙𝑜𝑛) cos (∅𝑙𝑎𝑡)sin (∅𝑙𝑜𝑛)

0 cos (∅𝑙𝑎𝑡) sin (∅𝑙𝑎𝑡)
)

 (20) 

where ∅𝑙𝑜𝑛 and ∅𝑙𝑎𝑡represent the longitude and latitude which

can be derived from 𝒙𝑘  in ECEF frame based on WGS84

geodetic system. Therefore, the error function for INS 

acceleration measurements can be expressed as follows: 

𝒆𝑘,𝑎𝑐𝑐
𝐼𝑁𝑆 =

(

𝑣𝑥𝑘+1,𝑟
𝑒𝑐𝑒𝑓

𝑣𝑦𝑘+1,𝑟
𝑒𝑐𝑒𝑓

𝑣𝑧𝑘+1,𝑟
𝑒𝑐𝑒𝑓

)

−

(

𝑣𝑥𝑘,𝑟
𝑒𝑐𝑒𝑓

+ 𝑎𝑥𝑘
𝑒𝑐𝑒𝑓

∙ ∆𝑡

𝑣𝑦𝑘,𝑟
𝑒𝑐𝑒𝑓

+ 𝑎𝑦𝑘
𝑒𝑐𝑒𝑓

∙ ∆𝑡

𝑣𝑧𝑘,𝑟
𝑒𝑐𝑒𝑓

+ 𝑎𝑧𝑘
𝑒𝑐𝑒𝑓

∙ ∆𝑡)
(21) 

where ∆𝑡  is the time difference between two states and the 

covariance matrix for the INS factor is expressed as 𝜮𝑘,𝑎𝑐𝑐
𝐼𝑁𝑆 .

Similarly, we can obtain the error function for gyroscope as 

follows: 

(Δ𝜃𝑘,𝑟
𝑙𝑜𝑐𝑎𝑙 , Δ𝜙𝑘,𝑟

𝑙𝑜𝑐𝑎𝑙 , Δ𝜓𝑘,𝑟
𝑙𝑜𝑐𝑎𝑙  ) = 𝑹𝐿𝐵((𝑤𝑥𝑘

𝑏𝑜𝑑𝑦
−

𝑤𝑘,𝑥
𝑏𝑜𝑑𝑦

)∆𝑡, (𝑤𝑦𝑘
𝑏𝑜𝑑𝑦

− 𝑤𝑘,𝑦
𝑏𝑜𝑑𝑦

)∆𝑡, (𝑤𝑧𝑘
𝑏𝑜𝑑𝑦

− 𝑤𝑘,𝑧
𝑏𝑜𝑑𝑦

)∆𝑡)𝑇

(22) 

𝒆𝑘,𝑤
𝐼𝑁𝑆 = (

𝜃𝑘+1,𝑟
𝑙𝑜𝑐𝑎𝑙

𝜙𝑘+1,𝑟
𝑙𝑜𝑐𝑎𝑙

𝜓𝑘+1,𝑟
𝑙𝑜𝑐𝑎𝑙

)− (

𝜃𝑘,𝑟
𝑙𝑜𝑐𝑎𝑙 + Δ𝜃𝑘,𝑟

𝑙𝑜𝑐𝑎𝑙

𝜙𝑘,𝑟
𝑙𝑜𝑐𝑎𝑙 + Δ𝜙𝑘,𝑟

𝑙𝑜𝑐𝑎𝑙

𝜓𝑘,𝑟
𝑙𝑜𝑐𝑎𝑙 + Δ𝜓𝑘,𝑟

𝑙𝑜𝑐𝑎𝑙

)  (23) 

Moreover, the INS can also provide the orientation in the local 

frame as 𝜃𝑘,𝐴𝐻𝑅𝑆
𝑙𝑜𝑐𝑎𝑙 , 𝜙𝑘,𝐴𝐻𝑅𝑆

𝑙𝑜𝑐𝑎𝑙 , 𝜓𝑘,𝐴𝐻𝑅𝑆
𝑙𝑜𝑐𝑎𝑙 . Thus, the error function for

AHRS measurements is as follows: 

𝒆𝑘,𝐴𝐻𝑅𝑆
𝐼𝑁𝑆 = (

𝜃𝑘+1,𝑟
𝑙𝑜𝑐𝑎𝑙

𝜙𝑘+1,𝑟
𝑙𝑜𝑐𝑎𝑙

𝜓𝑘+1,𝑟
𝑙𝑜𝑐𝑎𝑙

)− (

𝜃𝑘+1,𝐴𝐻𝑅𝑆
𝑙𝑜𝑐𝑎𝑙

𝜙𝑘+1,𝐴𝐻𝑅𝑆
𝑙𝑜𝑐𝑎𝑙

𝜓𝑘+1,𝐴𝐻𝑅𝑆
𝑙𝑜𝑐𝑎𝑙

) (24)
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Therefore, the error function for INS is shown as follows: 

||𝒆𝑘
𝐼𝑁𝑆||

Σ𝑘
𝐼𝑁𝑆
2 = ||𝒆𝑘,𝑎𝑐𝑐

𝐼𝑁𝑆 ||Σ𝑘
𝑎𝑐𝑐
2 + ||𝒆𝑘,𝑤

𝐼𝑁𝑆||Σ𝑘
𝑤
2 + ||𝒆𝑘,𝐴𝐻𝑅𝑆

𝐼𝑁𝑆 ||
𝜮𝑘
𝐴𝐻𝑅𝑆
2

(25) 

𝜮k
acc, 𝜮𝑘

𝑤 and 𝜮𝑘
𝐴𝐻𝑅𝑆 are the covariance matrix associated with 

the acceleration, gyroscope and AHRS measurements, 

respectively. 

C. GNSS Pseudorange Factor

The GNSS receiver receives multiple signals from satellites

at a given epoch k which can be expressed as: 

𝑺𝑽𝒌 = {𝑺𝑽𝑘,1, 𝑺𝑽𝑘,2, 𝑺𝑽𝑘,3, … , 𝑺𝑽𝑘,𝑗} (26) 

The position of GNSS receiver is 𝑿𝑘,𝑟
𝑒𝑐𝑒𝑓

= (𝑥𝑘,𝑟
𝑒𝑐𝑒𝑓

, 𝑦𝑘,𝑟
𝑒𝑐𝑒𝑓

, 𝑧𝑘,𝑟
𝑒𝑐𝑒𝑓

). 

The position of satellite 𝑺𝑽𝑘,𝑛  is represented as  𝒙𝑆𝑉,𝑛
𝑥𝑦𝑧

=

(𝑥𝑆𝑉
𝑒𝑐𝑒𝑓

, 𝑦𝑆𝑉
𝑒𝑐𝑒𝑓

, 𝑧𝑆𝑉
𝑒𝑐𝑒𝑓

)𝑇. Therefore, we can obtain the predicted

GNSS pseudorange measurement for satellite 𝑺𝑽𝑘,𝑛 as:

ℎ𝑝(𝑺𝑽𝑘,𝑗 , 𝑿𝑘,𝑟
𝑒𝑐𝑒𝑓

 ) = ||𝒙SV,j
xyz
− 𝑿𝑘,𝑟

𝑒𝑐𝑒𝑓
|| + 𝜹𝑘,𝑟

𝑐𝑙𝑜𝑐𝑘

(27) 

where ℎ𝑝(∗)  is the measurement function of pseudorange

measurement. 𝒙𝑆𝑉,𝑗
𝑥𝑦𝑧

is the position of satellite j. 𝑿𝑘,𝑟
𝑒𝑐𝑒𝑓

 is the 

position of the GNSS receiver at given epoch k. 𝜹𝑘,𝑟
𝑐𝑙𝑜𝑐𝑘  is the 

receiver clock bias. In this paper, the earth rotation and 

atmosphere delay are calculated in advance using the model 

detailed in [53]. The measured pseudorange from GNSS 

receiver is expressed as 𝜌𝑆𝑉,𝑛  and is given by the

ℎ𝑝(𝑺𝑽𝑘,𝑗 , 𝑿𝑘,𝑟
𝑒𝑐𝑒𝑓

 ) and additional Gaussian noise. We can have 

the following formulation: 

𝜌𝑆𝑉,𝑛 = ℎ
𝑝(𝑺𝑽𝑘,𝑗 , 𝑿𝑘,𝑟

𝑒𝑐𝑒𝑓
) + 𝛮(0, 𝜎𝑝

2) (28) 

where 𝜎𝑝 is the uncertainty of the given satellite measurement

𝜌𝑆𝑉,𝑛 . The LOS/NLOS and their uncertainty is classified in

Section III with 𝜎𝐿𝑂𝑆,𝑝 for LOS satellite and 𝜎𝑁𝐿𝑂𝑆,𝑝 for NLOS

satellite. Therefore, we can compute the error function for a 

given satellite measurement 𝜌𝑆𝑉,𝑗 as follows:

||𝒆𝑘,𝑗
𝑃 ||𝜎𝑝2

2 = ||𝜌𝑆𝑉,𝑗 − ℎ
𝑝(𝑺𝑽𝑘,𝑗 , 𝑿𝑘,𝑟

𝑒𝑐𝑒𝑓
)||𝜎𝑝2

2

(29) 

D. Efficient Incremental Optimization

Regarding the conventional GNSS single point positioning,

the weighted least square method [3] is to make use of all the 

satellite measurements at given epoch k to get the best posterior 

estimate of the GNSS receiver’s position 𝒙𝑘
𝑥𝑦𝑧

 as follows: 

𝑿𝑘,𝑟
𝑒𝑐𝑒𝑓∗

= argmin ∑ ||𝒆𝑘,𝑗
𝑃 ||𝜎𝑝2

2
𝑗 (30) 

where 𝑿𝑘,𝑟
𝑒𝑐𝑒𝑓∗

 is the optimal estimate of the GNSS receiver’s 

position. If all the historical GNSS measurements are 

considered, the optimal GNSS receiver’s position set 𝑿𝑘
𝑒𝑐𝑒𝑓

=

{𝑿1,𝑟
𝑒𝑐𝑒𝑓

, 𝑿2,𝑟
𝑒𝑐𝑒𝑓

, 𝑿3,𝑟
𝑒𝑐𝑒𝑓

, … , 𝑿𝑘,𝑟
𝑒𝑐𝑒𝑓

, … } is estimated as follows: 

𝑿𝑘
𝑒𝑐𝑒𝑓∗

= argmin ∑ ||𝒆𝑘,𝑗
𝑃 ||𝜎𝑝2

2
𝑗,𝑘 (31) 

In this paper, we formulate three factors including the motion 

model factor, the INS factor and the GNSS pseudorange factor. 

Therefore, the optimal state set 𝑿 = {𝒙1, 𝒙2, 𝒙3, … , 𝒙𝑘 , … } can

be solved as follows: 

𝑿∗ = argmin ∑ ||𝒆𝑘,𝑗
𝑃 ||𝜎𝑝2

2
𝑗,𝑘 + ||𝒆𝑘

𝑀𝑀||
𝜮𝑘
𝑀𝑀
2 + ||𝒆𝑘,𝑎𝑐𝑐

𝐼𝑁𝑆 ||𝜮𝑘
𝑎𝑐𝑐
2 +

||𝒆𝑘,𝑤
𝐼𝑁𝑆||𝜮𝑘

𝑤
2 + ||𝒆𝑘,𝐴𝐻𝑅𝑆

𝐼𝑁𝑆 ||
𝜮𝑘
𝐴𝐻𝑅𝑆
2 (32) 

To solve this optimization problem, this paper makes use of the 

ISAM2 [18] in GTSAM [57]. With the efficient incremental 

optimization feature [18] of ISAM2, the optimization problem 

can be conducted with real-time performance. 

V. EXPERIMENT RESULTS 

A. Experiment Setup

Two experiments were conducted in typical urban canyons

of Hong Kong on 10 April 2019. The experimental scenes are 

shown in Figure 6. The figure on the left shows the test vehicle 

with all the sensors installed in a compact sensor kit. The 

figures in the middle and right show the tested urban canyons. 

The tested urban scenarios contain static buildings, trees and 

dynamic objects (double-decker bus, cars). According to our 

previous research [10], the double-decker bus could cause 

potential NLOS measurements. 

In both experiments, a u-blox M8T GNSS receiver was used 

to collect raw GPS/BeiDou measurements at a frequency of 1 

Hz. The sky-pointing fisheye camera was employed to capture 

the sky view image at a frequency of 10 Hz. The Xsens Ti-10 

IMU was employed to collect data at a frequency of 100 Hz. In 

addition, the NovAtel SPAN-CPT, a GNSS RTK/INS (fiber 

optic gyroscopes) integrated navigation system, was used to 

provide the ground truth of positioning. All the data were 

collected and synchronized using the robot operation system 

(ROS) [58]. The coordinate systems between all the sensors 

were calibrated before the experiments. The parameters used in 

this paper are shown in Table I which are experimentally 

determined. . 
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Fig. 6. Experimental vehicle and sensor setup in left-hand side figure. Tested scenarios of urban canyon 1 and 2. 

We first analyzed the performance of GNSS standalone 

positioning performance using three single point positioning 

(SPP) methods as shown below. The objective of this analysis 

was to validate the effectiveness of the fish-eye camera in 

improving the GNSS standalone positioning. 

(a) LS: least square (LS) method with all measurements

given same weighting. 

(b) WLS: weighted least square (WLS) method.

(c) R-WLS: WLS method with the aid of re-weighting

scheme in equation (10). 

Three GNSS/INS integrated positioning methods are also 

compared:  

(1) EKF: EKF-based tightly coupled GNSS/INS [16].

(2) FG: Factor graph-based tightly-coupled GNSS/INS .

(3) FGFC: Factor graph-based tightly coupled GNSS/INS

aided by fish-eye camera. 

In the evaluation, the estimated state is in ECEF coordinate. 

We transform the positioning results from ECEF into the ENU 

coordinate. 2D positioning (north and east directions) 

performance of the three integrations are compared. 
TABLE I 

PARAMETER VALUES USED IN THIS PAPER 

Parameters 𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑑 ∆𝑑 𝐾 fc
Value 50 5 pixel 1.5 583 

Parameters a A 𝐹 

Value 30 32 10 

B. Evaluation in Urban Canyon 1 Experiment

1) GNSS Standalone Positioning

The GNSS standalone positioning result can be found in

Table II. 15.51 meters of 2D mean positioning error is obtained 

by the conventional LS method. The maximum error reaches 

48.6 meters. The mean positioning error decreases to 9.57 

meters with the maximum error still being more than 40 meters 

using the WLS [53]. Moreover, the standard deviation 

decreases slightly. With the help of the fish-eye camera and the 

re-weighting scheme, the positioning error decreases to less 

than 9 meters. This improved result shows that applying 

re-weighting scheme can lower the impacts of the NLOS 

measurements with the aid of fish-camera. The GNSS 

standalone positioning improvement is not dramatic (from 9.57 

to 8.92 meters). However, the modeling of NLOS 

measurements is significant for further GNSS/INS integration 

which can be seen in next section. 

The LOS/NLOS satellite numbers can be seen in Table III. 

The mean of LOS number (9.0) is larger than that of NLOS 

(4.6). More importantly, the standard deviation of NLOS 

satellite number is 2.57, which is larger than the satellite 

number of LOS being 1.92. The value for NLOS is larger 

regarding to the standard deviation of the LOS (1.92) and 

NLOS (2.57) satellites. Based on the classification by fish-eye 

camera, almost 33.83% of the satellites are NLOS 

measurements with the rest being the LOS. The minimum 

number of LOS satellites is only 4, which is not even enough 

for GNSS (GPS/Beidou) WLS calculation. Therefore, NLOS 

exclusion is not acceptable in this scenario. The maximum 

NLOS satellite number reaches 8.  

The LOS/NLOS satellite distributions in 9 heuristically 

selected cases are shown in Figure 7. The positioning errors 

using the three SPP are shown in the figure. Several interesting 

findings are summarized in the followings. Firstly, the NLOS 

satellite numbers vary over epochs causing different magnitude 

of positioning error. For example, the errors are only 6.6 meters 

for LS and 4.9 meters for WLS with only 1 NLOS at Case A. 

Whereas, error of 47.6 meters for LS and 13.6 meters for WLS 

with 6 NLOS are obtained at Case E. Most importantly, the 

error is reduced to 4.1 and 9.1 meters using R-WLS at Cases A 

and E, respectively. Secondly, it is found that the re-weighting 

scheme could even deteriorate the result at Case F. The main 

reason is that it is caused by the truth that the LOS/NLOS 

classification based on fish-eye camera is not perfect. We can 

find that some satellites annotated with green arrows is 

misclassified at Case F, and at Case C. Our future work is to 

improve the image segmentation method to obtain better 

LOS/NLOS classification accuracy. 
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In short, the applied fish-eye can detect the NLOS 

measurements and improved GNSS standalone results are 

obtained by re-weighting the detected NLOS measurements. 

TABLE II 
POSITIONING PERFORMANCE OF THE GNSS SPPS IN URBAN 

CANYON 1 

GNSS 

Positioning 
LS WLS R-WLS

Mean error 15.51 m 9.57 m 8.92 m 

Std 10.33 7.32 7.27 

Maximum error 48.16 m 46.29 m 42.33 m 

TABLE III 
SATELLITE NUMBERS IN URBAN CANYON 1  

Satellite LOS NLOS LOS&NLOS 

Mean number 9.0 4.6 13.63 

Std 1.92 2.57 2.49 

Max number 15 8 18 

Min number 4 0 7 

Percentage 66.17% 33.83% 100% 

Fig. 7. The satellite visibilities at 9 heuristically selected cases. 

2) GNSS/INS Integrated Positioning

After integrating the INS, the positioning results using the

three listed GNSS/INS integrations are shown in TABLE IV. 

8.31 meters of 2D mean positioning is obtained using the 

conventional EKF-based tightly coupled GNSS/INS 

integration. Moreover, the standard deviation is 7.24 meters. Its 

trajectory deviates the reference trajectory in some of the 

epochs as shown in Figure 8. The corresponding 2D positioning 

error can be seen in Figure 9. The maximum error is larger than 

40 meters. After using the factor graph to integrate the 

GNSS/INS, the mean of positioning error decreases to about 4 

meters. Moreover, the standard deviation also decreases from 

7.24 to 3.19 meters, and the maximum error is 23.1 meters. 

From Figure 8, the majority of the large outliers are removed 

from the trajectories. The positioning errors are reduced almost 

throughout the epochs which can be seen in Figure 9. With the 

help of the LOS/NLOS detection method aided by fish-eye 

camera, the mean 2D positioning error is reduced to 3.21 

meters. Moreover, the standard deviation is also decreased to 

less than 2 meters. In addition, the maximum error is also 

reduced to 12.3 meters with less outliers.  

Fig. 8. Trajectories of the GNSS/INS integrations in urban canyon 1: the x- 

and y-axes denote the position in east and north directions, respectively.  

Fig. 9. 2D positioning error of the GNSS/INS integrations in urban canyon 1. 

In short, the factor graph-based method can improve the 

positioning performance from 8.31 to 3.96 meters. However, 

the positioning error can still reach more than 20 meters in 

some epochs (e.g. epoch 200~210). The re-weighting of NLOS 

measurements can help to mitigate the larger outliers with all 

the positioning errors being less than 14 meters (see blue curve 

in Figure 9). The result shows that the re-modeling of NLOS is 

significant for mitigating GNSS/INS integration outliers. This 

is significant for autonomous driving localization, which 

requires high robustness. 

TABLE IV 
POSITIONING PERFORMANCE OF THE THREE METHODS IN URBAN 

CANYON 1  

All data EKF FG FGFC 

Mean error 8.31 m 3.96 m 3.21 m 

Std 7.24 3.19 1.96 

Maximum error 44.2 m 23.1 m 12.3 m 

C. Evaluation in Urban Canyon 2 Experiment

1) GNSS Standalone Positioning

To challenge the performance of the proposed method in

denser urban (with larger percentage of NLOS measurements), 

we conduct the other experiment in urban canyon 2 with 
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narrower streets (see Figure 6), which is more challenging 

compared to urban canyon 1 situation. Although the denser 

urbanization, GNSS standalone positioning is obtained with the 

error being reduced from 8.57 m (WLS) to 8.12 m (R-WLS). 

The detailed results can be seen in Table V, which is similar to 

the improvement in urban canyon 1. The mean of LOS/NLOS 

satellite numbers and corresponding percentage are shown in 

Table IV. We can observe that the percentage (41.94%) of 

NLOS satellite are larger compared with the one (33.83%) in 

urban canyon 1. This means that there exists more reflected 

GNSS signals. The minimum NLOS number is 1 which means 

at least 1 NLOS measurement exists during the test. 

Interestingly, the minimum LOS number is only 2, which is not 

even enough for GNSS positioning. This again shows that 

re-using the NLOS is more preferable instead of NLOS 

exclusion. 

TABLE V 
POSITIONING PERFORMANCE OF THE GNSS SPPS  IN URBAN 

CANYON 2 

GNSS 

Positioning 
LS WLS R-WLS

Mean error 11.7 m 8.57 m 8.12 m 

Std 6.53 5.50 5.59 

Maximum error 30.01 m 25.91 m 25.36 m 

TABLE VI 
SATELLITE NUMBERS IN URBAN CANYON 2  

Satellite LOS NLOS LOS&NLOS 

Mean number 7.31 5.27 12.58 

Std 2.63 1.77 3.21 

Max number 13 8 18 

Min number 2 1 6 

Percentage 58.06% 41.94% 100% 

2) GNSS/INS Integrated Positioning

The evaluated positioning result is shown in TABLE VII.

7.28 meters of 2D mean positioning is obtained using the EKF 

GNSS/INS integration. Moreover, the standard deviation is 

4.41 meters. Interestingly, we can find that the mean 

positioning error of EKF-based tightly coupled GNSS/INS 

integration is smaller in urban canyon 2 (7.28 m) compared 

with the one in urban canyon 1 (8.31 m), although the 

percentage of NLOS is larger in urban canyon 2. According to 

our previous research in [4], the NLOS error caused is 

determined by three components: 1) the azimuth angle of 

satellite. 2) the elevation angle of satellite and 3) the distance 

between the GNSS receiver and potential reflector. Therefore, 

larger percentage of NLOS satellites do not necessarily cause 

larger GNSS positioning error as it also depends on the 

environment conditions (e.g. the distance between the GNSS 

receiver and signal reflector) shown in Figure 6. The urban 

canyon 1 has larger street width compared with urban canyon 2. 

Therefore, the test in urban canyon 1 can have even larger mean 

positioning error. 

Fig. 10. Trajectories of the GNSS/INS integrations in urban canyon 2: the x- 

and y-axes denote the position in east and north directions, respectively.  

Fig. 11. 2D positioning error of the GNSS/INS integrations in urban canyon 2. 

The trajectory and its corresponding 2D positioning error 

are shown in Figures 10 and 11, respectively. The maximum 

2D error reaches 20.88 meters. Using the factor graph to 

integrate the GNSS/INS, the mean positioning error decreases 

to about 3.5 meters. Moreover, the standard deviation also 

decreases from 4.41 to 3.50 meters. The maximum error is 19.2 

meters. Majority of the large outliers are removed from the 

trajectories. The positioning errors are reduced throughout 

most of the epochs, which can be seen in Figure 11. With the 

help of the LOS/NLOS detection and modeling aided by 

fish-eye camera, the mean 2D positioning error is reduced to 

3.05 meters. Moreover, the standard deviation is also decreased 

to about 3 meters. Interestingly, we can find that the blue curve 

in Figure 11 peaks at the epoch 20 annotated by the green arrow. 

The main reason behind is due to the misclassification of 

LOS/NLOS measurements (see the illustration in Figure 7 Case 

F). 

In short, the improved result again shows effectiveness of 

the proposed method. Compared to the EKF-based method, the 

proposed method can effectively remove the outliers. 

TABLE VII 
POSITIONING PERFORMANCE OF THE THREE METHODS IN URBAN 

CANYON 2  

All data EKF FG FGFC 

Mean error 7.28 m 5.39 m 4.73 m 

Std 4.41 3.50 3.06 

Maximum error 20.88 m 19.2 m 19.1 m 
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VI. CONCLUSIONS 

GNSS/INS integrated navigation is significant for systems 

with positioning requirements. However, the performance of 

GNSS/INS integration suffers from excessive unexpected 

GNSS outliers in dense urban areas. This paper proposes to 

tightly integrate GNSS/INS using the state-of-the-art factor 

graph. Moreover, we employ the fish-eye camera to detect 

NLOS receptions so that the GNSS outliers can be modeled. 

Instead of excluding the NLOS receptions, this paper makes 

use of both the NLOS and LOS measurements by treating them 

with different weightings. The experiments show that the 

proposed method can effectively improve the performance of 

GNSS/INS integration compared with the conventional 

GNSS/INS tightly coupled integration using EKF. 

In urban canyon 1 experiment, the mean positioning error is 

reduced from 8.31 to 3.21 meters. In urban canyon 2 

experiment, the mean positioning error is reduced from 7.28 to 

4.73 meters. However, the remaining 2D positioning error is 

still not enough for autonomous driving vehicle. In the future 

work, we will integrate the LiDAR-based positioning into the 

proposed GNSS/INS fusion scheme. In addition, the sky and 

non-sky area separation method will be further improved in the 

future work. 
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